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A computer simulation technique is employed to calculate the transient photo-decay characteristics for a disordered 
semiconductor featuring an exponential tail of localized states plus a narrow Gaussian feature of adjustable height. The 
resulting data are subjected to analysis via the "pre-transit" (1/i(t).t), “post-transit” (i(t).t) and "Fourier Transform" 
procedures. It is shown that all three options can detect the presence of the Gaussian component. However, even when the 
peak height of this becomes comparable to or less than that of the local exponential background, the pre-transit procedure 
consistently miscalculates its energy. In contrast, the post-transit and Fourier transform procedures correctly identify this 
energy, and also provide improved resolution of the energy distribution and other properties of the localized states. We 
discuss further the theory and application of the Fourier Transform procedures to the analysis of i(t) data, focusing in 
particular on the effect of the inevitable short and long time truncation of i(t) data in experimental measurements. We show 
how some simple measures can be taken to extend the energy range and accuracy of the method in the determination of 
density-of-states distributions.  
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1. Introduction 
 
It has long been recognized that in the case of trap-

limited band transport in disordered semiconductors, 
transient photo-decay measurements have the potential to 
provide information on the energy distribution, and 
possibly other characteristics, of the localized states 
involved. In particular, an exponential density-of-states 
(DOS) distribution yields (after the initial carrier trapping 
regime) a featureless power-law decay in the current, I(t), 
with elapsed time after carrier generation, t, while the 
presence of additional structure in the DOS can give rise to 
significant deviations from this (e.g. [1,2]). 

In the "pre-transit" regime of the photo-decay 
response (i.e. in the absence of carrier losses by arrival at 
an extraction electrode or by recombination), a simple 
procedure was proposed ([3], following the model 
advanced in [4]) for interpreting suitable experimental 
data. In this "pre-transit” technique (following completion 
of the initial free carrier trapping regime), the DOS, g(Eth) 
(cm-3eV-1), at energy Eth = kT ln(νt) was predicted to be  

 
g(Eth) = (I(t=0) g(Ec)ν- -1)/(I(t) t). (1) 

 
Here, T is the temperature, ν  the "attempt to escape" 

frequency for trapped carriers, I(t=0) the transient 
photocurrent at zero time (i.e. the product of the number of 
excess carriers per unit specimen thickness, the electronic 
charge, the free carrier mobility and the applied electric 
field), and g(Ec) the density of states at the mobility edge 
separating extended from localized states. The rationale 
for the choice of Eth arose from the concept of a 
"thermalization energy", such that the release time 
constant for states at this depth, ν−1exp(Eth /kT), is equal to 
the elapsed time t. It was envisaged that shallower levels 
will have had sufficient time to achieve quasi-thermal 
equilibrium with the extended transport states, while 
deeper traps will not. For the case of a slowly decaying 
exponential DOS, this was predicted to yield a reasonably 
sharp peak in the trapped carrier density close to Eth [4], 
leading straightforwardly [3] to the above analytical 
procedure. 

Although this procedure worked well in the case of a 
purely exponential DOS, it soon became clear that 
problems arose in the case of more complex energy 
distributions. Indeed, for a very highly structured DOS, it 
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could even yield the complete inverse of the true energy 
distribution (e.g. [2]).  

The resulting impression was that the pre-transit 
procedure should be acceptable, provided any structure in 
the DOS was "not very pronounced", but would become 
invalid for more highly structured distributions. However, 
to the best of our knowledge, the definition of "not very 
pronounced", and indeed whether the pre-transit analysis 
is valid even then, has not been properly explored. It was 
one of the main objectives of the present study to make 
such an evaluation.  

We will also examine the viability of the “post-
transit” procedure ([3] and references therein), which 
predicts the relationship 
  

( ) ( )ttCIEg th =    (2) 
 

Here, C is a constant subsequently [5] quantified as 2 
g(Ec)/(Q0 t0 ν), where Q0 is the total charge and t0 the free 
carrier transit time. However, since at least one of these 
parameters (t0) may well not easily be estimated from 
experimental data, it is more common in practice to 
perform normalized calculations of the DOS, using such 
data. 

A subsequent alternative [6,7] to the above analytical 
techniques, although admittedly less straightforward to 
apply, involved a Fourier transformation of the current vs. 
time measurements into the frequency (ω) domain, 
followed by an analysis of the resulting data to yield the 
DOS.  

In its simplest form, the one-sided Digital Fourier 
Transform (DFT) I(ωn), of the time-sampled signal i(tk) 
may be approximated by cosine and sine summations viz, 
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In practice, we have employed linear spline fitting 

between successive points, and a piecewise- analytic 
integration scheme. The DOS may then be obtained, [8,9] 
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 with the energy scale being 
 

( )nn kTE ωνln= ,   (5) 
 
where ν is as in Eq. 1, σ is the capture cross-section, e the 
electronic charge, μ the electron mobility, ε the electric 
field strength, and A the conduction cross section. G is the 
effective ac amplitude of optical generation at frequency 
ω, i.e. the Fourier Transform of the impulse excitation, 
and φ is the phase lag between this ac excitation and the 
photocurrent.  

Here, it is important to note that although the resulting 
energy scale E(ωn), may appear equivalent to that for the 
thermalization energy, Eth, the analysis carries no 

implication of, or indeed requirement for, a peak in the 
occupied state density close to this energy. Rather, the 
procedure employs the full available time range of the 
experimental data in performing the transform for any 
particular value of ω and hence E(ω). 

 
2. The computer simulation procedure and  
    results for the "pre-transit" case 
 
The model DOS employed in this study, as shown in 

Fig. 1, featured an exponential bandtail of the form ge(E) = 
g(Ec) exp(-E/kTo), with g(Ec) = 4x1021 cm-3eV-1 and with 
To = 600 K as the characteristic temperature for the 
exponential component. To this was added a relatively 
narrow Gaussian component of the form  
g(Epk) exp(-0.5((E-Epk)/Ew)2)), where Epk = 0.35 eV was the 
peak energy of the feature and Ew =  
0.025 eV its width parameter. The peak height, g(Epk), was 
varied via a multiplying factor, M, with respect to the 
value of the background exponential component at a depth 
of 0.35 eV, i.e. g(Epk) = M×g(Ec) exp(-0.35/kTo) = 4.5x1018 
M cm-3eV-1 for the above parameters. 
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Fig. 1.  DOS employed in the simulation study, as 
described in the text. 

 
Fig. 2 shows the resulting transient photocurrents, as 

computed at a measurement temperature of 300 K, using 
the technique outlined in [10], in the "pre-transit" regime 
(i.e. with no carrier losses due to arrival at an extraction 
electrode or to recombination).  
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Fig. 2. Computed transient photocurrents, using the DOS 
of Fig. 1, normalized to the current at zero time and with 
no carrier losses due to arrival at an extraction electrode 
or to recombination. The values of M are 0, 0.3, 1, 3 and 
10, increasing as indicated, and the temperature used for 

the simulations was 300 K. 
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Fig 3.  Density of states, as calculated using the pre-
transit procedure, for the cases M = 0.3 to 10. The solid 
line shows the data, and the open circles are fits to an 
exponential bandtail plus a Gaussian feature. The inset 
graph indicates the individual fitted components for the  
                                       case M = 1. 
 
 
Fig. 3 displays the DOS values, as calculated using 

the pre-transit procedure, for the cases M = 0.3, 1, 3 and 
10. It also shows iterative fits, with the parameters g(Ec), 
To, g(Epk), Epk and Ew all being totally free variables. The 
inset shows the contributions of the various components to 
the computed DOS for the case M = 1. While the fitting 
procedure gives excellent agreement for M = 3 or less, it 
can be seen that the fit is not quite so precise for the case 
M = 10. 

Note that with the normalized currents in Fig. 2, the 
conversion expression for the pre-transit procedure is 
reduced to g(E) = (1/I(t).t) (g(Ec)/ν), with g(Ec) = 4x1021 
cm-3eV-1 and ν = 1012 Hz, as employed in all of the present 
simulations.  

Of course, although the technique of fitting data to a 
known functional DOS works effectively here, it is 
unlikely to be applicable when interpreting actual 
experimental data, where an assumption of the form of the 
DOS would be required. Its value in the present study is to 
assist in the evaluation of the viabilities of the pre-transit, 
and (below) post-transit and FT techniques, under such 
"idealized" circumstances.  

Note also that since one or more of the parameters 
I(t=0), g(Ec) and ν in Eq. 1 would almost certainly not be 
known in practice, such a quantitative conversion would 
not be possible in the case of experimental data. However, 
the first two parameters only influence the absolute 
magnitude of the calculated g(E), while inaccuracy in the 
assumed value of ν will also displace the energy scale 
uniformly, but not influence the actual forms of the curves 
or the resulting values of Epk and Ew.  

Table 1 summarizes the data arising from such fits. 
The calculated fitting accuracies in the values of Epk are 
better than ± 1 meV for 3≤M , even in the case of the 
barely-detectable deviation of the current from the pure 
power-law form for M = 0.3 (see Fig. 2). The poorer fit for 
M = 10 results in a somewhat smaller calculated value of 
Epk, as shown in the table.  

 
 
Table 1. Fitting parameters for the DOS data in Fig. 3. 

 
M T0 (K) g(Epk) 

(cm-3eV-1) 
Epk (eV) Ew (eV) 

0.3 590 9.6×1018 0.283 0.049 
1 598 3.7×1019 0.274 0.052 
3 596 1.3×1020 0.263 0.055 

10 593 6.0×1020 0.246 0.061 
 
 

Critically, it is clear that all values of Epk are 
significantly smaller than the true value of 0.35 eV. 
Moreover, they all lie in the general vicinity of the local 
minimum of the DOS in Fig. 1 for M = 10 (i.e. ~ 0.28 eV). 
Here, we again note the finding in [2] that sufficient 
structure in a DOS can completely invert its form, as 
calculated using the pre-transit analysis. It now seems that 
this situation applies to much smaller values of M than 
were previously anticipated!   

Although there is a weak trend towards the correct 
value of 0.35 eV as M falls, it is clear that this might (if at 
all!) only be approached when the Gaussian component is 
so small as to be undetectable! Indeed, contrary to prior 
notional expectations, the fitted value of Epk  remains close 
to 0.28 eV, even for the case M = 0.3!  

The fitted widths of the Gaussian component, Ew, are 
approximately twice the correct value of 0.025 eV. Such 
"kT broadening" is a well known consequence of the fact 
that this analytical technique assumes that all carriers 
trapped in a state at energy E, with a release time constant 
τ = ν−1exp(E /kT), are released after exactly this dwell 
time, rather than over an appropriate probability 
distribution of times around it.  

The values of To for the exponential component of the 
DOS are close to the true value of 600 K. However, from 
Fig. 3, the values of g(Ec) are about a factor of six larger 
than the true value of 4x1021 cm-3eV-1. This illustrates a 
further limitation of the procedure. The states at Eth can 
never be in complete quasi-thermal equilibrium with the 
extended ones, while free carriers in the latter are still 
being lost to deeper-lying traps. This reduces the current 
relative to that in Eq. 1, and thus raises (inter alia) the 
calculated values of g(Ec). 

In respect of the pre-transit procedure, we may thus 
conclude that: 

(i) Although this can provide an indication of the 
presence of the Gaussian feature, it gives a significant 
error in the peak energy of such a feature. 
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(ii) Unexpectedly, at least in terms of previous 

notional impressions, this situation persists even when the 
additional height of the feature falls below that of the 
background DOS.  

 
 
3. Computer simulation results for the "post- 
    transit" case 
 
Fig. 4 shows data corresponding to those in Fig. 2, but 

with a finite and short free carrier transit time. The 
simulation parameters were g(Ec) = 4x1021 (cm-3eV-1), Q0 
= 1.6x10-9 C, t0  =  2x10-11 sec. and ν = 1012 Hz, giving the 
conversion parameter C = 2 g(Ec)/(Q0 t0 ν) in Eq. 2 as 
2.5x1029 cm-3eV-1C-1.  
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Fig 4. Computer simulated current at T = 300 K, for 
values of M of 0.3, 1, 3 and 10, increasing in the 
direction indicated. In this case, the simulation 
parameters (see text) were set to yield a short transit 
time. The graph also shows the current that would be 
obtained  in  the  case  of an infinitely thick specimen (i.e.  
                          with no carrier extraction). 

 
 

Fig. 5 presents the resulting calculated DOS data, and 
Table 2 shows the associated fitting parameters. For M ≤ 
3, the values of g(Ec)  and T0  are very close to the correct 
figures of 4 × 1021 cm-3eV-1 and 600 K, respectively. The 
agreement is less precise for the case M = 10, where the 
large Gaussian component significantly influences the 
current at shorter times, and thus the corresponding 
calculated DOS. 

All of the Epk values are now within 1% of the correct 
one of 0.35 eV. The Ew values are now approximately 40% 
larger than the true value of 0.025 eV. This indicates a 
reduced degree of thermally-induced broadening, to ~ 
kT/2. This broadening also influences the fitted heights of 
the Gaussian component. The g(Epk) value should be 
4.5x1018 cm-3eV-1 for the case M = 1, and proportionately 
lower or higher for the other cases. This effect is 
approximately what would be expected if the total area 
under the Gaussian component is preserved in the presence 
of the broadening. The whole recovered DOS – (band-tail 
and feature) is now lower than that obtained by the pre-

transit method, and is much closer to the original DOS. 
The reduced broadening of the post-transit calculated 
Gaussian feature accounts for its maximum being higher 
and hence closer to the tail in the inset to Fig. 5 than in the 
inset to Fig. 3.  
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Fig. 5. Density of states, as calculated using the post-
transit procedure, for the cases M = 0.3 to 10. The solid 
line shows the data, and the open circles are fits to an 
exponential bandtail plus a Gaussian feature. The inset 
graph indicates the individual fitted components  for  the  
                                   case M = 1. 

 
 
 

Table 2. Fitting parameters for the DOS data in Fig. 5. 
 

M T0 
(K) 

g(Epk) 
(cm-3eV-1) 

Epk 
(eV) 

Ew 
(eV) 

0.3 603 9.8×1017 0.342 0.036 
1 607 3.1×1018 0.344 0.035 
3 598 8.5×1018 0.349 0.033 
10 642 2.7×1019 0.348 0.034 

 
 

Overall, and in dramatic contrast to the case of the 
pre-transit analysis, we conclude that the post-transit 
procedure is effective in revealing the DOS, irrespective 
(subject to quite limited thermally-induced broadening) of 
the degree of structure present within it.  
 
 

4. Fourier transform analysis of the  
     simulation data 

 
Figs. 6 and 7 show the results of an analysis of the 

pre- and post-transit data using the Fourier transform 
method, and Table 3 presents the fitted parameters. It can 
be seen that the iterative fits are again very good, and the 
calculated peak energies of the Gaussian component are 
extremely close to the correct value of 0.35 eV. The 
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degree of thermal broadening is comparable to that 
obtained using the post-transit analysis, and is obviously a 
significant improvement upon that for the pre-transit case.  
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Fig. 6. Densities of states, as calculated using the 
Fourier transform analysis of  the pre-transit data. 
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Fig. 7. The post-transit data, for the cases M = 0.3 to 10. 
The solid lines show the data, and the open circles are 
fits to an exponential bandtail plus a Gaussian feature. 
The inset indicates the individual fitted components for  
                             the case M = 1. 

 
Table 3. Fitting parameters for the FT DOS data in Figs. 

6 and 7. 
 

M T0 
(K) 

g(Epk) 
(cm-3eV-1) 

Epk 
(eV) 

Ew 
(eV) 

Fig. 6 – pre-transit data 
0.3 604 1.0×1018 0.345 0.037 
1 604 3.2×1018 0.348 0.036 
3 604 9.4×1018 0.349 0.035 
10 603 3.7×1019 0.350 0.035 

Fig. 7 – post-transit data 
0.3 605 3.7×1017 0.359 0.030 
1 598 1.4×1018 0.354 0.036 
3 597 4.3×1018 0.353 0.036 
10 597 1.5×1019 0.351 0.036 

 
 

The distortions of the calculated DOS at the extremes 
of the energy ranges are due to the truncation of 
information about the current at very short and very long 
times. We have recently found that improved apodization 
techniques can significantly reduce this effect (see section 
6). It will also be noted that the values of g(Ec) and g(Epk) 
for the post-transit data are about 50% of those expected. 
This is due to subtle differences between the effects of 
carrier losses by recombination (as assumed in the Fourier 
transform procedure) and by arrival at an extraction 
electrode (as in the present simulations). 
 
 

5. The Potential value of measurements at  
     different temperatures 
 
We now turn to the effect of the measurement 

temperature upon the data extracted using the three 
techniques. The thermalization energy concept gives a 
time corresponding to the peak energy of tth = ν−1exp(Eth 

/kT), which can be re-written as ln(tth) = ln(ν−1) + Eth 
(1/kT). Thus, in our case, a plot of ln(tpk) vs (1/kT) should 
have a gradient of Epk, and an intercept of ln(ν−1). The 
potential value of such a plot is to eliminate the need to 
assume a value of ν in determining the DOS, thereby not 
only giving an improved value for the peak energy of any 
feature under examination, but also offering an indication 
of the nature of the localized states, since their capture 
cross section, σ, and thus charged or neutral (when empty) 
state can be inferred from ν, via detailed balance 
considerations, i.e., 
 

45 50 55 60 65 70 75 80 85
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4

ln
(t pk

)

1/kT  
 

Fig. 8. Inverse temperature dependence of the time tpk 
corresponding to Epk, as determined using the pre-transit 
(filled circles) and FT techniques (open circles), for 
simulation  data  generated  with   no   carrier   losses  by  
                   completion of transit or recombination. 

 
 

σ = ν / (g(Ec)kTvth),      (6)  
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where vth is the thermal velocity of the charge carriers 
(weakly temperature dependent but expected to be ~ 107 
cm.sec-1 at normal temperatures). 

We have thus examined the temperature dependence 
of the time corresponding to the value of Epk for the case 
M = 1, for the case of no carrier losses by arrival at an 
extraction electrode or recombination. The results are 
shown in Fig. 8. For the pre-transit analysis, the intercept 
is -27.15, yielding ν = 6.2x1011 Hz, which is acceptably 
close to the true value of 1x1012 Hz However, the gradient 
yields Epk = 0.265 ± 0.002 eV, which is similar to the 
values in Table 1. This is obviously again incompatible 
with the true value of 0.35 eV and is also close to the 
energy of the local minimum (at ~ 0.28 eV) in the DOS for 
larger values of M. For the FT analysis, the corresponding 
values are Epk = 0.351 eV and ν = 1.03x1012 Hz. The 
results of a similar analysis of simulation data with a very 
short transit time, as interpreted using both the post-transit 
and the FT procedure, yield similar close agreement. 

We have also examined a limited number other cases 
(specifically T0 values of 400 and 800 K with other 
parameters as above), and have established that the 
inaccuracies arising from the pre-transit analytical 
procedure are similar to those presented above, in terms of 
the resulting values of Epk etc. Thus, we can state that even 
though this problem may not be totally universal, the 
potential error in the energy placement of any significant 
feature in the DOS is sufficient in itself to invalidate any 
confident use of the procedure. 
 
 

6. Discussion of the Fourier transform 
     method  
 
We present a short explanatory note here on the 

practical application of the Fourier Transform method – 
treating in particular, the approach used to minimise errors 
arising from limited instrumental rise-time and truncation 
of time-sampled data at both short and long times.   

The rationale for making the conversion to the 
frequency domain has been alluded to in section 1. In 
essence, in all of the above, we are seeking to extract, from 
the measured i(t) data, information on the distribution of 
trapping times and associated release times for each part of 
the trap distribution.  In this context, the direct use of time-
domain data is fraught with difficulty, since during the 
photocurrent decay, the traps act in concert and their 
effects on the free carrier density are not independent. The 
information we seek is thus encoded as a convolution of all 
of the trap system responses and is additionally convolved 
with the instrument system response. The instantaneous 
i(t) cannot, except under severely restricted conditions 
‘disentangle’ the trapping and release time information.  

However, in the frequency domain, I(ω), including 
phase information φ(ω), contains the required information 
in un-encoded form, as simple products and sums, which 
are easily analysed. Nevertheless, for accurate application 
of the one sided Fourier Transform, we require data in the 
range ∞≤≤ t0 . In practice, as for all DFT situations, the 
experimental time range available for the DFT summation 

typified in Eq. 3 is necessarily restricted, and moreover, at 
short times, the instrument time response will distort the 
short-time i(t) data. Fig. 9 shows simulated i(t) data 
illustrating these points. For this illustration, we have used 
a system response with a single dominant pole at 10-9s, 
and a sampled-time range of sts 110 9 ≤≤− . We note that 
higher order response functions could in principle be 
treated in the same way. Truncation of the time domain 
data at short and long times produces effectively, via the 
DFT, the convolution of the (already distorted) data with a 
rectangular function, as shown. 
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Fig. 9. Simulated i(t) for the M = 3 case, with the effects 
of instrumental time response and sampled-data time- 

truncation indicated. 
 
 

The abrupt truncation of i(t) at long times will, on 
application of the DFT, generate a distribution of high 
order harmonics which will be manifested as substantial 
errors in the calculated DOS at deep energies, and spread 
over a wide energy range. In addition to the instrumental 
rise-time distortion at short times, the short-time truncation 
of i(t) has the effect of removing the initial part of the 
Fourier integral, which can result in large errors in the 
calculated DOS at shallow energies. We address both of 
these problems below. 

For the long-time truncation problem, standard digital 
signal processing (DSP) practice employs apodization 
procedures which use window functions to ‘taper off’ the 
data to minimise the generation of higher order harmonics 
in the DFT. Various such window functions (Gaussian, 
Blackmann, Hann, Kaiser [11]) were applied to the present 
data, to good effect. 

Fig. 10 demonstrates the effect of apodization. Here 
we compare the DOS computed using Eq. 4, for three 
time-domain i(t) data sets based again on the M=3 case. 
For DOS (a), we have used a very wide time range 

sts 1016 1010 ≤≤−  to approach the ‘true’ FT of the i(t) 
data, while (b) uses the abruptly truncated data of Fig. 9. 
For the third computed DOS, (c), we have imposed a 
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Kaiser Bessel window function with parameter α = 2, on 
the truncated data of Fig. 9. Note that this last plot has also 
been ‘short-time-corrected’ by a procedure which will be 
described below. 
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Fig. 10. DOS calculated by FT from i(t) for the M= 3 
case, using; (a) i(t) data for sts 1016 1010 ≤≤− ;                   
(b) sampled and time-truncated data as shown in fig. 9; 
(c) the same data with long-time apodization using a 
Kaiser Bessel window. Note that (c) additionally uses i(t)  
      correction at short times, as outlined in the text . 

 
 

It can be seen that using a very wide time-range of i(t) 
allows an accurate reconstruction of the ‘starting’ DOS 
over a wide range of energies, to within about kT of the 
band edge. On the other hand, using the truncated i(t) data 
with no apodization, leads to ‘apparently unsystematic’, 
sharply varying errors of up to an order of magnitude, over 
a surprisingly wide energy range, from 0.7 eV depth up to 
0.4 eV from the band edge. At the top of the DOS plot, the 
short-time truncation has produced a large systematic error 
in the shallow DOS, even producing a sign change at 
energies less than ~ 0.2 eV! 

On application of apodization, the long-time errors are 
substantially removed, and only the ‘bottom 2kT’ of the 
available deep trap energy range is lost.  

We next attempt to take account of the inaccessible 
short time i(t) in a simple two step procedure. The first 
step, made in the time domain, extrapolates the response 
backwards toward t = 0, whilst retaining the effects of 
instrumental rise time. The second step makes a correction 
for the instrument response, but in the frequency domain.  

The time domain extrapolation is an iterative 
procedure using the known value of the system dominant 
pole, the measured initial photocurrent i(t1) and average 
initial measured slope, di/dt. Assuming the short time 
current is of the general form 
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( )xtt

i
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0

0

1
2

+
= ,                  (7) 

 
it is possible to use this to solve numerically (for x) for the 
resulting instrumentally modified time response so as to 
‘patch’ the constructed current on to the initial sampled 

data with the appropriate slope.  Typically, a value of t0 ~ 
1/v has been used, but it turns out that the procedure is not 
too sensitive to variation in this value. Note that the value 
of i0 is just a formal result of the procedure, and may not 
equal the actual initial current at t = 0.  
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Fig. 11. Linear plot showing how i(t) - modified by the 
system response at short times may be constructed by 

extrapolation of longer time sampled data. 
 
 

It may be argued that this procedure is limited in that 
it presumes a power law form of decay. We note that the 
variation allowed in index x has produced reasonably good 
fits to data in which the original i(t) falls between such 
extremes as ‘flat’, and an exponential decay. In addition, 
normally we need only aim for a reasonable fit in the 
restricted range 11 10 ttt ≤≤ , which relaxes the fitting 
conditions somewhat. 

Fig. 11 illustrates this procedure, applied to the 
simulation data of Fig. 9 for the case M=3.  Here we have 
a system rise time of 1ns, and a first sample point also at            
t = 1ns, although the procedure allows these times to differ 
from each other by at least an order of magnitude.   
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Fig. 12. Phase shift φ(ω) computed via DFT for the 
simulated i(t) under several conditions.  (a) Full i(t) 
curve, (b) truncated i(t) after instrumental response, with 
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no time domain or frequency domain correction,                    
(c) truncated i(t) after instrumental response, with only 
time domain correction, (d) truncated i(t) after 
instrumental response, with time and frequency domain  
                                     corrections. 

 
It is evident from Fig. 11 that the system response can 

have a significant distorting effect on the i(t) curve. The 
resulting response starts from zero, and often, as here, 
exhibits a large overshoot above the actual i(t) response, 
not approaching the true response until as much as one 
order of magnitude in time beyond the system rise-time. In 
the past, this portion of the recorded data was often 
discarded. Here, we recognize that useful information is 
embedded in this part of the response, and may be 
extracted, given knowledge of the system response. We 
have reported on earlier approaches to this topic in several 
publications [12,13] 

Application of the first step of the procedure described 
above, using the first sampled data point at t = 1ns, and the 
slope between this point and t = 2ns, results in the 
constructed curve (symbol  ) for t < 1ns. It is clear that 
in this case, the fit to the instrumentally modified short 
time response is very good. 

A DFT performed on the composite i(t) data will be 
much more accurate, at least up to a frequency ω1 ~ 1/t1, 
than a DFT taken without the short-time construction, thus 
extending the reliable upper energy range of the method to 

( )11 ln ωνkTE = . However, the second correction step, in 
the frequency domain, must also be completed. 

The frequency domain correction is straightforward. 
Knowing the instrumental system transfer function 
( ) ( ) ( )ωθωω ∠= HH ~~ , which is in this case a simple single 

pole response, we can apply multiplicative and additive 
corrections to the DFT amplitude and phase respectively. 
Other transfer functions, if known, can be treated equally 
easily at this point. 

In Fig. 12, we show the effect of both the time and 
frequency domain corrections on the computed DFT phase 
shift φ(ω).In this case, a substantial improvement is 
evident, which results in a great reduction in error in the 
DOS computation for shallow energies, as illustrated in 
Fig. 10.  

 
 
7. Conclusions 
 
We have demonstrated that even for the case of a very 

small deviation from an exponential DOS, as induced by 
the addition of a narrow Gaussian component, application 
of the pre-transit (1/I(t).t) analytical technique yields a 
significant error in respect of the peak energy of this 
feature.  

If our results can be generalized to other forms of 
DOS, and we see no reason why this should not be the 
case, then this technique (despite its attractive simplicity) 
appears inapplicable in respect of any attempted 
quantitative study of localized state distributions in 
disordered semiconductor materials. 

 

 
 
 
 
In contrast, we have also demonstrated that both the 

post-transit and Fourier transform techniques can yield 
accurate representations of the DOS, and therefore remain 
valid. 

Recent improvements in the Fourier Transform 
method procedures have also been outlined, dealing in 
particular with the minimisation of short- and long-time 
data truncation effects. Substantial improvements are 
shown to be achievable. 
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